208 research outputs found

    SPEDEN: Reconstructing single particles from their diffraction patterns

    Full text link
    Speden is a computer program that reconstructs the electron density of single particles from their x-ray diffraction patterns, using a single-particle adaptation of the Holographic Method in crystallography. (Szoke, A., Szoke, H., and Somoza, J.R., 1997. Acta Cryst. A53, 291-313.) The method, like its parent, is unique that it does not rely on ``back'' transformation from the diffraction pattern into real space and on interpolation within measured data. It is designed to deal successfully with sparse, irregular, incomplete and noisy data. It is also designed to use prior information for ensuring sensible results and for reliable convergence. This article describes the theoretical basis for the reconstruction algorithm, its implementation and quantitative results of tests on synthetic and experimentally obtained data. The program could be used for determining the structure of radiation tolerant samples and, eventually, of large biological molecular structures without the need for crystallization.Comment: 12 pages, 10 figure

    Coherent X-ray Diffractive Imaging; applications and limitations

    Full text link
    The inversion of a diffraction pattern offers aberration-free diffraction-limited 3D images without the resolution and depth-of-field limitations of lens-based tomographic systems, the only limitation being radiation damage. We review our experimental results, discuss the fundamental limits of this technique and future plans.Comment: 7 pages, 8 figure

    Design and Analysis of Turbulence Grids for Aeroacoustic Measurements

    Get PDF

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte

    Low Expression of Bax Predicts Poor Prognosis in Resected Non-small Cell Lung Cancer Patients with Non-squamous Histology†

    Get PDF
    doi:10.1093/jjco/hyn089 Objective: The present study evaluated the prognostic significance of apoptosis-related proteins p53, Bax and galectin-3 in patients with non-small cell lung cancer (NSCLC) treated with surgical resection. Methods: We investigated the expression of these proteins and their association with clinicopathologic characteristics including disease-free survival (DFS) and overall survival (OS) i

    Analysis and prediction of cancerlectins using evolutionary and domain information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the function of a protein is one of the major challenges in the post-genomic era where a large number of protein sequences of unknown function are accumulating rapidly. Lectins are the proteins that specifically recognize and bind to carbohydrate moieties present on either proteins or lipids. Cancerlectins are those lectins that play various important roles in tumor cell differentiation and metastasis. Although the two types of proteins are linked, still there is no computational method available that can distinguish cancerlectins from the large pool of non-cancerlectins. Hence, it is imperative to develop a method that can distinguish between cancer and non-cancerlectins.</p> <p>Results</p> <p>All the models developed in this study are based on a non-redundant dataset containing 178 cancerlectins and 226 non-cancerlectins in which no two sequences have more than 50% sequence similarity. We have applied the similarity search based technique, i.e. BLAST, and achieved a maximum accuracy of 43.25%. The amino acids compositional analysis have shown that certain residues (e.g. Leucine, Proline) were preferred in cancerlectins whereas some other (e.g. Asparatic acid, Asparagine) were preferred in non-cancerlectins. It has been found that the PROSITE domain "Crystalline beta gamma" was abundant in cancerlectins whereas domains like "SUEL-type lectin domain" were found mainly in non-cancerlectins. An SVM-based model has been developed to differentiate between the cancer and non-cancerlectins which achieved a maximum Matthew's correlation coefficient (MCC) value of 0.32 with an accuracy of 64.84%, using amino acid compositions. We have developed a model based on dipeptide compositions which achieved an MCC value of 0.30 with an accuracy of 64.84%. Thereafter, we have developed models based on split compositions (2 and 4 parts) and achieved an MCC value of 0.31, 0.32 with accuracies of 65.10% and 66.09%, respectively. An SVM model based on Position Specific Scoring Matrix (PSSM), generated by PSI-BLAST, was developed and achieved an MCC value of 0.36 with an accuracy of 68.34%. Finally, we have integrated the PROSITE domain information with PSSM and developed an SVM model that has achieved an MCC value of 0.38 with 69.09% accuracy.</p> <p>Conclusion</p> <p>BLAST has been found inefficient to distinguish between cancer and non-cancerlectins. We analyzed the protein sequences of cancer and non-cancerlectins and identified interesting patterns. We have been able to identify PROSITE domains that are preferred in cancer and non-cancerlectins and thus provided interesting insights into the two types of proteins. The method developed in this study will be useful for researchers studying cancerlectins, lectins and cancer biology. The web-server based on the above study, is available at <url>http://www.imtech.res.in/raghava/cancer_pred/</url></p

    The relationship of symptom dimensions with premorbid adjustment and cognitive characteristics at first episode psychosis: Findings from the EU-GEI study

    Get PDF
    Premorbid functioning and cognitive measures may reflect gradients of developmental impairment across diagnostic categories in psychosis. In this study, we sought to examine the associations of current cognition and premorbid adjustment with symptom dimensions in a large first episode psychosis (FEP) sample. We used data from the international EU-GEI study. Bifactor modelling of the Operational Criteria in Studies of Psychotic Illness (OPCRIT) ratings provided general and specific symptom dimension scores. Premorbid Adjustment Scale estimated premorbid social (PSF) and academic adjustment (PAF), and WAIS-brief version measured IQ. A MANCOVA model examined the relationship between symptom dimensions and PSF, PAF, and IQ, having age, sex, country, self-ascribed ethnicity and frequency of cannabis use as confounders. In 785 patients, better PSF was associated with fewer negative (B = −0.12, 95% C.I. −0.18, −0.06, p &lt; 0.001) and depressive (B = −0.09, 95% C.I. −0.15, −0.03, p = 0.032), and more manic (B = 0.07, 95% C.I. 0.01, 0.14, p = 0.023) symptoms. Patients with a lower IQ presented with slightly more negative and positive, and fewer manic, symptoms. Secondary analysis on IQ subdomains revealed associations between better perceptual reasoning and fewer negative (B = −0.09, 95% C.I. −0.17, −0.01, p = 0.023) and more manic (B = 0.10, 95% C.I. 0.02, 0.18, p = 0.014) symptoms. Fewer positive symptoms were associated with better processing speed (B = −0.12, 95% C.I. −0.02, −0.004, p = 0.003) and working memory (B = −0.10, 95% C.I. −0.18, −0.01, p = 0.024). These findings suggest that the negative and manic symptom dimensions may serve as clinical proxies of different neurodevelopmental predisposition in psychosis
    corecore